Data Science Book Review: Statistics Done Wrong

If you read this blog, you are very likely to be involved in any kind of data collection, manipulation or analysis. When not performed wisely, your analysis will lead you to incorrect conclusions. Alex Reinhart, in his book Statistics Done Wrong, has listed several concepts that are key when analysing data, such as statistical power, correlation/causation and publication bias.
The book provides interesting advices and warnings related to research papers. Alex clearly explains how people currently use statistics with example of misuse. Statistics Done Wrong provides plenty of examples of statistical misinterpretation…even done by statisticians.
The book covers what I would call insidious topics such as the base rate fallacy and the issue of testing several hypotheses, generating a high rate of false positive within p-values. The concept of statistical power, or how you can miss an effect if your sample size is not adequate, is also discussed.
My only regret is that, starting from Chapter 9, the book suddenly aims at an academic audience with topics related to publication. Out of these last chapters, the book is really dedicated to practitioners in data-related fields. Any Data Scientist should read this book.
Share

Data Science Book Review: Superforecasting

Superforecasting – by Tetlock and Gartner – explains the huge study performed by Tetlock about the ability of people to predict future events (mainly geo-political). The closed questions (i.e. choose between yes/no) are far from real numbers you will predict in business forecasting. Tetlock discusses skills that have been identified as driving accurate forecasts. The point of the authors is that forecasting… Continue reading...

Share

What Could Big Data Mean for Debt Management?

This is a guest post from Yaakov Smith.

Big data is changing the way the financial world handles client interaction. No matter what sector data analytics are employed in (IT, marketing, sales etc.), its implications are leading to a new wave of Business Intelligence (BI).

Any company that uses analytics on a daily basis will understand the ability of big data to transform customer relations and optimize management… Continue reading...

Share

Data Science Book Review: Forecasting

Pageflex Persona [document: PRS0000045_00027]While working on forecasting (understand “time series analysis”) I found several interesting and state of the art articles from Rob J. Hyndman. He is the co-author, with George Athanasopoulos of Forecasting: Principles and Practice. This is an excellent concise and comprehensive text explaining concepts behind forecasting, common algorithms and how to implement them in R (for a business… Continue reading... | 1 Comment

Share

Asimov, Psychohistory and Predictive Analytics

“You don’t need to predict the future. Just choose a future — a good future, a useful future — and make the kind of prediction that will alter human emotions and reactions in such a way that the future you predicted will be brought about. Better to make a good future than predict a bad one.”

Isaac Asimov, Prelude to Foundation

If you like hard science fiction with… Continue reading... | 1 Comment

Share

Top 5 Benefits Serve By Big Data To The Businesses

This is a guest post from Ethan Millar.

Big data is the latest competitive advantage for businesses. Data are now woven into every industry and function across the global economy. The use of Big data will become the basis of competition and growth for businesses by enhancing the productivity and creating significant value for global economy with waste reduction and increased quality of products and services.

Share

Data Scientist: Why it may be the best career after college

This infographic is proposed by Sandipan Pal.

Finally, the day has arrived.

After years of teaming up for group studies, setting goals and planning to fare better than your competition, you have achieved it.

Topped your grades and now waiting to make a mark in your field.

But, how do you make a mark?

Easier said than done, isn’t it?

Traditionally, it would mean… Continue reading... | 1 Comment

Share